Application of circulant matrices to the construction and decoding of linear codes

نویسندگان

  • Ron M. Roth
  • Abraham Lempel
چکیده

An r × r matrix A = [aij] over a field F is called circulant if aij = a0, ( j−i) mod r . An [n = 2r, k = r] linear code over F = GF(q) is called double-circulant if it is generated by a matrix of the form [I A], where A is an r × r circulant matrix. In this work we first employ the Fourier transform technique to analyze and construct several families of double-circulant codes. The minimum distance of the resulting codes is lower-bounded by 2√⎯r and can be decoded easily employing the standard BCH decoding algorithm or the majority-logic decoder of Reed-Muller codes. Second, we present a decoding procedure for Reed-Solomon codes, based on a representation of the parity-check matrix by circulant blocks. The decoding procedure inherits both the (relatively low) time complexity of the Berlekamp-Massey algorithm, and the hardware simplicity characteristic of Blahut’s algorithm. The proposed decoding procedure makes use of the encoding circuit together with a reduced version of Blahut’s decoder. This work was presented in part at the Beijing International Workshop on Information Theory, July 1988, and in part at the IEEE International Symposium on Information Theory, San Diego, California, January 1990.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of the q-th roots of circulant matrices

In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.

متن کامل

Application of Circulant Matrices

A k x k matrix A = [aU lover a field F is called circulant if aij = a (j-i) mod k' A [2k ,k l linear code over F = GF (q) is called double-circulant if it is generated by a matrix of the fonn [I A l, where A is a circulant matrix. In this work we ftrst employ the Fourier transform techJ nique to analyze and construct se:veral families of double-circulant codes. The minimum distance of the resul...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

1-State Error-Trellis Decoding of LDPC Convolutional Codes Based on Circulant Matrices

We consider the decoding of convolutional codes using an error trellis constructed based on a submatrix of a given check matrix. In the proposed method, the syndromesubsequence computed using the remaining submatrix is utilized as auxiliary information for decoding. Then the ML error path is correctly decoded using the degenerate error trellis. We also show that the decoding complexity of the p...

متن کامل

Multiple-Bases Belief-Propagation with Leaking for Decoding of Moderate-Length Block Codes

Short algebraic codes promise low-delay data transmission and good performance results when transmitted over the additive white Gaussian noise (AWGN) channel and decoded by maximum-likelihood (ML) soft-decision decoding. One reason for this is the large minimum distance of these codes. For belief-propagation (BP) decoding, short algebraic codes show suboptimal results due to their high-density ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1990